TELEFUNKEN Semiconductors

PWM Power Control with Automatic Duty Cycle Reduction

Description

The U6084B is a bipolar technology PWM IC designed for the control of an N -channel power MOSFET used as a high side switch. The IC is ideal for the use in the brightness control (dimming) of lamps such as, in dashboard
applications. For a constant brightness the preselected duty cycle is automatically reduced as a function of the supply voltage.

Features

- Pulse width modulation up to 2 kHz clock frequency
- Protection against short circuit, load dump overvoltage and reverse V_{S}
- Duty cycle 0 to 100% continuously
- Output stage for power MOSFET
- Interference and damage protection according to VDE 0839 and ISO/TR 7637/1.
- Charge pump noise suppressed
- Ground wire breakage protection

Package: SO16

Figure 1. Block diagram with external circuit

Pin Description

Functional Description

GND, Pin1

Enable/Disable, Pin 2

The dimmer can be switched on or off with pin 2 independently of the set duty cycle.

V_{2}	Function
Approx. $>0.7 \mathrm{~V}$ or open	Disable
$\langle 0.7 \mathrm{~V}$ or connected to Pin 1	Enable

Control Input, Pin 3

The pulse width is controlled by means of an external potentiometer (47 k Ω). The characteristic (angle of rotation/duty cycle) is linear. The duty cycle can be varied from 0 to 100%. It is possible to further restrict the duty cycle with the resistors R_{1} and R_{2}.
Pin 3 is protected against short-circuit to $\mathrm{V}_{\text {Batt }}$ and ground GND ($\mathrm{V}_{\text {Batt }} \leqq 16.5 \mathrm{~V}$).

Duty Cycle Reduction, Pin 4

With Pin 4 connected according to figure 2, the set duty cycle is reduced as from $\mathrm{V}_{\text {Batt }} \approx 12.5 \mathrm{~V}$. This causes a power reduction in the FET and in the lamps. In addition,

Pin	Symbol	Function
1	GND	IC ground
2	En / Dis	Enable/disable
3	$\mathrm{~V}_{\text {I }}$	Control input (duty cycle)
4	Reduct	Duty cycle reduction
5	NC	Attenuation
6	Osc	Oscillator
7	NC	Not connected
8	NC	Not connected
9	Latch	Status short circuit latch
10	NC	Not connected
11	Delay	Short circuit protection delay
12	Sense	Current sensing
13	$2 \mathrm{~V}_{\mathrm{S}}$	Voltage doubler
14	Output	Output
15	NC	Not connected
16	V $_{\mathrm{S}}$	Supply voltage V_{S}

the brightness of the lamps is largely independent of the supply voltage range, $\mathrm{V}_{\text {Batt }}=12.5$ to 16 V .

Output Slope Control

The rise and fall time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$) of the lamp voltage can be limited to reduce radio interference. This is done with an integrator which controls a power MOSFET as source follower. The slope time is controlled by an external capacitor and the oscillator current.
Calculation:
$\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{r}}=\mathrm{V}_{\text {Batt }} \cdot \frac{\mathrm{C}_{4}}{\mathrm{I}_{\text {osc }}}$
With $\mathrm{V}_{\text {Batt }}=12 \mathrm{~V}, \mathrm{C}_{4}=470 \mathrm{pF}$ and $\mathrm{I}_{\text {osc }}=40 \mu \mathrm{~A}$, we thus obtain a controlled slope of
$\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{r}}=12 \mathrm{~V} \cdot \frac{470 \mathrm{pF}}{40 \mu \mathrm{~A}}=141 \mu \mathrm{~s}$

Attenuation, Pin 5

Capacitor C_{4} connected to Pin 5 damps oscillation tendencies.

Oscillator, Pin 6

The oscillator determines the frequency of the output voltage. This is defined by an external capacitor, C_{2}. It is
charged with a constant current, I, until the upper switching threshold is reached. A second current source is then activated which taps a double current, 2 I, from the charging current. The capacitor, C_{2}, is thus discharged by the current, I, until the lower switching threshold is reached. The second source is then switched off again and the procedure starts once more.

Example for oscillator frequency calculation

$\mathrm{V}_{\mathrm{T} 100}=\mathrm{V}_{\mathrm{S}} \cdot \alpha_{1}=\left(\mathrm{V}_{\text {Batt }}-\mathrm{I}_{\mathrm{S}} \cdot \mathrm{R}_{3}\right) \cdot \alpha_{1}$
$\mathrm{V}_{\mathrm{T}<100}=\mathrm{V}_{\mathrm{S}} \cdot \alpha_{2}=\left(\mathrm{V}_{\text {Batt }}-\mathrm{I}_{\mathrm{S}} \cdot \mathrm{R}_{3}\right) \cdot \alpha_{2}$
$\mathrm{V}_{\mathrm{TL}}=\mathrm{V}_{\mathrm{S}} \cdot \alpha_{3}=\left(\mathrm{V}_{\text {Batt }}-\mathrm{I}_{\mathrm{S}} \cdot \mathrm{R}_{3}\right) \cdot \alpha_{3}$
where
$\mathrm{V}_{\mathrm{T} 100}=$ High switching threshold (100% duty cycle)
$\mathrm{V}_{\mathrm{T}<100}=$ High switching threshold ($<100 \%$ duty cycle)
$\mathrm{V}_{\mathrm{TL}}=$ Low switching threshold
α_{1}, α_{2} and α_{3} are fixed constant.
The above mentioned threshold voltages are calculated for the following values given in the data sheet.
$\mathrm{V}_{\text {Batt }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA}, \mathrm{R}_{3}=150 \Omega$,
$\alpha_{1}=0.7, \alpha_{2}=0.67$ and $\alpha_{3}=0.28$.
$\mathrm{V}_{\mathrm{T} 100}=(12 \mathrm{~V}-4 \mathrm{~mA} \cdot 150 \Omega) \cdot 0.7 \approx 8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}<100}=11.4 \mathrm{~V} \cdot 0.67=7.6 \mathrm{~V}$
$\mathrm{V}_{\mathrm{TL}}=11.4 \mathrm{~V} \cdot 0.28=3.2 \mathrm{~V}$
For a duty cycle of 100%, an oscillator frequency, f , is as follows:
$\mathrm{f}=\frac{\mathrm{I}_{\mathrm{osc}}}{2 \cdot\left(\mathrm{~V}_{\mathrm{T} 100}-\mathrm{V}_{\mathrm{TL}}\right) \cdot \mathrm{C}_{2}}, \begin{gathered}\text { where } \mathrm{C}_{2} \\ \text { and } \quad \mathrm{I}_{\mathrm{osc}}= \\ =40 \mu \mathrm{nF}\end{gathered}$
Therefore:

$$
\mathrm{f}=\frac{40 \mu \mathrm{~A}}{2 \cdot(8 \mathrm{~V}-3.2 \mathrm{~V}) \cdot 22 \mathrm{nF}}=189 \mathrm{~Hz}
$$

For a duty cycle of less than 100%, the oscillator frequency, f, is as follows:

$$
\begin{aligned}
& \mathrm{f}=\frac{\mathrm{I}_{\text {osc }}}{2 \cdot\left(\mathrm{~V}_{\mathrm{T}<100}-\mathrm{V}_{\mathrm{TL}}\right) \cdot \mathrm{C}_{2}+2 \cdot \mathrm{~V}_{\text {Batt }} \cdot \mathrm{C}_{4}} \\
& \text { whereas } \quad \mathrm{C}_{4}=470 \mathrm{pF} \\
& =\frac{\mathrm{I}_{\text {osc }}}{2 \cdot(7.6 \mathrm{~V}-3.2 \mathrm{~V}) \cdot 22 \mathrm{nF}+2 \cdot 12 \mathrm{~V} \cdot 470 \mathrm{pF}} \\
& =195 \mathrm{~Hz}
\end{aligned}
$$

A selection of different values of C_{2} and C_{4}, provides a range of oscillator frequency, f, from 10 to 2000 Hz .

Pins 7, 8, 10 and 15

Not connected.

Status Short Circuit Latch, Pin 9

Overvoltage Detection

Stage 1

If overvoltages $\mathrm{V}_{\text {Batt }}>20 \mathrm{~V}$ (typ.) occur, the external transistor is switched off and on at $\mathrm{V}_{\text {Batt }}<18.5 \mathrm{~V}$ (hysteresis).

Stage 2

If $\mathrm{V}_{\text {Batt }}>28.5 \mathrm{~V}(\mathrm{typ})$, the voltage limitation of the IC is reduced from 26 V to 20 V . The gate of the external transistor remains at the potential of the IC ground, thus producing voltage sharing between FET and lamps in the event of overvoltage pulses occuring (e.g., load dump). The short-circuit protection is not in operation. At $\mathrm{V}_{\text {Batt }}<23 \mathrm{~V}$, the overvoltage detection stage 2 is switched off.

Short-Circuit Protection and Current Sensing, Pins 11 and 12

1. Short-Circuit Detection and Time Delay, $\mathbf{t}_{\mathbf{d}}$

The lamp current is monitored by means of an external shunt resistor. If the lamp current exceeds the threshold for the short-circuit detection circuit $\left(\mathrm{V}_{\mathrm{T} 2} \approx 90 \mathrm{mV}\right)$, the duty cycle is switched over to 100% and the capacitor C_{5} is charged by a current source of $20 \mu \mathrm{~A}\left(I_{\text {dis }}-I_{\mathrm{ch}}\right)$. The external FET is switched off after the cut-off threshold $\left(\mathrm{V}_{\mathrm{TL}}\right)$ is reached. Renewed switching on the FET is possible only after a power-on reset. The current source, I_{ch}, ensures that the capacitor C_{5} is not charged by parasitic currents. The capacitor C_{5} is discharged by I_{ch} to typ. 0.7 V .

Time delay, t_{d}, is as follows:
$\mathrm{t}_{\mathrm{d}}=\mathrm{C}_{5} \cdot\left(\mathrm{~V}_{\mathrm{TL}}-0.7 \mathrm{~V}\right) /\left(I_{\text {dis }}-I_{\mathrm{ch}}\right)$
With $\mathrm{C}_{5}=330 \mathrm{nF}$ and $\mathrm{V}_{\text {Batt }}=12 \mathrm{~V}$, we have
$\mathrm{t}_{\mathrm{d}}=330 \mathrm{nF} \cdot(9.8 \mathrm{~V}-0.7 \mathrm{~V}) / 20 \mu \mathrm{~A}$
$=150 \mathrm{~ms}$.

The status of the short-circuit latch can be monitored via Pin 9 (open collector output).

Pin 9	Function
L	Short-circuit detected
H	No short-circuit detected

2. Current Limitation

The lamp current is limited by a control amplifier that protects the external power transistor. The voltage drop across an external shunt resistor acts as the measured variable. Current limitation takes place for a voltage drop of $\mathrm{V}_{\mathrm{T} 1} \approx 100 \mathrm{mV}$. Owing to the difference $\mathrm{V}_{\mathrm{T} 1}-\mathrm{V}_{\mathrm{T} 2} \approx 10 \mathrm{mV}$, current limitation occurs only when the short-circuit detection circuit has responded.
After a power-on reset, the output is inactive for half an oscillator cycle. During this time, the supply voltage capacitor can be charged so that current limitation is guaranteed in the event of a short circuit when the IC is switched on for the first time.

Ground-Wire Breakage

To protect the FET in the case of ground-wire breakage, a $820 \mathrm{k} \Omega$ resistor between gate and source it is recommended to provide proper switch-off conditions.

Charge Pump and Output, Pins 13 and 14

Output, Pin 14, is suitable for controlling a power MOSFET. During the active integration phase, the supply current of the operational amplifier is mainly supplied by the capacitor C_{3} (bootstrapping). Additionally, a trickle charge is generated by an integrated oscillator ($\mathrm{f}_{13} \approx 400 \mathrm{kHz}$) and a voltage doubler circuit. This permits a gate voltage supply at a duty cycle of 100%.

Undervoltage Detection:

In the event of voltages of approx. $\mathrm{V}_{\text {Batt }}<5.0 \mathrm{~V}$, the external FET is switched off and the latch for short-circuit detection is reset.

A hysteresis ensures that the FET is switched on again at approximately $\mathrm{V}_{\text {Batt }} \geq 5.4 \mathrm{~V}$.

Supply Voltage, \mathbf{V}_{s} or $\mathrm{V}_{\text {Batt, }}$ Pin 16

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltage	V_{S}	25	V
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40 to +110	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	$\mathrm{R}_{\text {thJA }}$	120	K/W

Electrical Characteristics

$\mathrm{T}_{\mathrm{amb}}=-40$ to $+110^{\circ} \mathrm{C}, \mathrm{V}_{\text {Batt }}=9$ to 16.5 V , (basic function is guaranteed between 6.0 V to 9.0 V) reference point Pin GND, unless otherwise specified (figure 1).

Parameters	Test Conditions / Pins	Symbol	Min.	Typ.	Max.	Unit
Current consumption	$\operatorname{Pin} 16$	I_{S}			6.8	mA
Supply voltage	Overvoltage detection, stage 1	$\mathrm{V}_{\text {Batt }}$			25	V
Stabilized voltage	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Pin 16	$\mathrm{~V}_{\mathrm{Z}}$	24.5		27.0
Battery undervoltage detection	ON	$\mathrm{V}_{\text {Batt }}$	4.4	5.0	5.6	V

TELEFUNKEN Semiconductors

U6084B-FP

Temic

U6084B-FP

Application

Figure 2.

Dimensions in mm

Package: SO 16

TELEFUNKEN Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.
> Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

